时序知识图谱测试解析

创建虚拟环境: python -m venv tkg_agent_env
激活虚拟环境: source tkg_agent_env/bin/activate
克隆代码库 git clone https://github.com/openai/openai-cookbook.git


进入项目目录: cd openai-cookbook/examples/partners/temporal_agents_with_knowledge_graphs/
安装Jupyter Lab: pip install jupyterlab
启动Jupyter Lab服务: jupyter lab


作用: 本地启动Web服务器,在浏览器打开Jupyter Lab操作界面,与项目文件进行交互。

双击打开temporal_agents_with_konwledge_graphs.ipynb文件

点击“双箭头”图标,重启内核并一键运行所有单元格

等待输出结果

需要OpenAI的API key调用模型分块、问答

分块时如遇到API速率上限可选择更换模型,需自己手动添加

后续没有问题就会生成图谱

可在单元格修改问题测试问答

在作者Huggingface上也有上传的已经处理好的数据集,代码可以直接下载调用

关于过程步骤,整个文件有详细的英文说明。

DataGraphX怎么帮企业从‘信息堆’迈向‘智能洞察’?

数据是新时代的石油,但未经提炼的原油毫无价值。今天,几乎所有企业都坐拥海量数据,却发现自己被困在了一座巨大的“信息堆”中——数据彼此割裂,难以查询,无法形成有效的洞察力来指导决策。

如何才能让数据开口说话,甚至能听懂我们的问题并给出智慧的答案?答案是知识图谱。它能将杂乱的数据连接成一张智能网络,让每一次查询都成为一次深度洞察的开始。

DataGraphX 正是为此而生的利器。它不仅仅是一个工具,更是一套帮助企业从“信息堆”迈向“智能洞察”的完整方法论和技术引擎。接下来,我们将探讨DataGraphX如何赋能企业,将数据资产转化为真正的决策优势。

DeepSeek多模态模型本地部署测试

Janus-Pro

:adoresever

显存要求:1B 识别图片:6G 生成图片9G

1.创建环境并安装基础依赖

# 创建Python环境(建议3.8以上)
conda create -n janus python=3.8
conda activate janus

# 克隆项目代码
git clone https://github.com/deepseek-ai/Janus.git
cd Janus

# 安装基础依赖
pip install -e .

# 安装Gradio界面依赖(如果需要UI界面)
pip install -e .[gradio]

2.运行Demo(建议修改为1b模型)

# 启动
python demo/app_januspro.py
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from PIL import Image

import numpy as np
import os
# import spaces  # Import spaces for ZeroGPU compatibility


# Load model and processor
model_path = "deepseek-ai/Janus-Pro-1B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
                                             language_config=language_config,
                                             trust_remote_code=True)
if torch.cuda.is_available():
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
else:
    vl_gpt = vl_gpt.to(torch.float16)

vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'

@torch.inference_mode()
# @spaces.GPU(duration=120) 
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    # set seed
    torch.manual_seed(seed)
    np.random.seed(seed)
    torch.cuda.manual_seed(seed)
    
    conversation = [
        {
            "role": "<|User|>",
            "content": f"<image_placeholder>\n{question}",
            "images": [image],
        },
        {"role": "<|Assistant|>", "content": ""},
    ]
    
    pil_images = [Image.fromarray(image)]
    prepare_inputs = vl_chat_processor(
        conversations=conversation, images=pil_images, force_batchify=True
    ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
    
    
    inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
    
    outputs = vl_gpt.language_model.generate(
        inputs_embeds=inputs_embeds,
        attention_mask=prepare_inputs.attention_mask,
        pad_token_id=tokenizer.eos_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=512,
        do_sample=False if temperature == 0 else True,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
    )
    
    answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
    return answer


def generate(input_ids,
             width,
             height,
             temperature: float = 1,
             parallel_size: int = 5,
             cfg_weight: float = 5,
             image_token_num_per_image: int = 576,
             patch_size: int = 16):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
    for i in range(parallel_size * 2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)

    pkv = None
    for i in range(image_token_num_per_image):
        with torch.no_grad():
            outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
                                                use_cache=True,
                                                past_key_values=pkv)
            pkv = outputs.past_key_values
            hidden_states = outputs.last_hidden_state
            logits = vl_gpt.gen_head(hidden_states[:, -1, :])
            logit_cond = logits[0::2, :]
            logit_uncond = logits[1::2, :]
            logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
            probs = torch.softmax(logits / temperature, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_tokens[:, i] = next_token.squeeze(dim=-1)
            next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)

            img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
            inputs_embeds = img_embeds.unsqueeze(dim=1)

    

    patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
                                                 shape=[parallel_size, 8, width // patch_size, height // patch_size])

    return generated_tokens.to(dtype=torch.int), patches

def unpack(dec, width, height, parallel_size=5):
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    return visual_img



@torch.inference_mode()
# @spaces.GPU(duration=120)  # Specify a duration to avoid timeout
def generate_image(prompt,
                   seed=None,
                   guidance=5,
                   t2i_temperature=1.0):
    # Clear CUDA cache and avoid tracking gradients
    torch.cuda.empty_cache()
    # Set the seed for reproducible results
    if seed is not None:
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        np.random.seed(seed)
    width = 384
    height = 384
    parallel_size = 5
    
    with torch.no_grad():
        messages = [{'role': '<|User|>', 'content': prompt},
                    {'role': '<|Assistant|>', 'content': ''}]
        text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
                                                                   sft_format=vl_chat_processor.sft_format,
                                                                   system_prompt='')
        text = text + vl_chat_processor.image_start_tag
        
        input_ids = torch.LongTensor(tokenizer.encode(text))
        output, patches = generate(input_ids,
                                   width // 16 * 16,
                                   height // 16 * 16,
                                   cfg_weight=guidance,
                                   parallel_size=parallel_size,
                                   temperature=t2i_temperature)
        images = unpack(patches,
                        width // 16 * 16,
                        height // 16 * 16,
                        parallel_size=parallel_size)

        return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
        

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(value="# Multimodal Understanding")
    with gr.Row():
        image_input = gr.Image()
        with gr.Column():
            question_input = gr.Textbox(label="Question")
            und_seed_input = gr.Number(label="Seed", precision=0, value=42)
            top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
        
    understanding_button = gr.Button("Chat")
    understanding_output = gr.Textbox(label="Response")

    examples_inpainting = gr.Examples(
        label="Multimodal Understanding examples",
        examples=[
            [
                "explain this meme",
                "images/doge.png",
            ],
            [
                "Convert the formula into latex code.",
                "images/equation.png",
            ],
        ],
        inputs=[question_input, image_input],
    )
    
        
    gr.Markdown(value="# Text-to-Image Generation")

    
    
    with gr.Row():
        cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
        t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")

    prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)")
    seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)

    generation_button = gr.Button("Generate Images")

    image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=900)

    examples_t2i = gr.Examples(
        label="Text to image generation examples.",
        examples=[
            "Master shifu racoon wearing drip attire as a street gangster.",
            "The face of a beautiful girl",
            "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
            "A glass of red wine on a reflective surface.",
            "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
            "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
        ],
        inputs=prompt_input,
    )
    
    understanding_button.click(
        multimodal_understanding,
        inputs=[image_input, question_input, und_seed_input, top_p, temperature],
        outputs=understanding_output
    )
    
    generation_button.click(
        fn=generate_image,
        inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
        outputs=image_output
    )

demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")